Up, down, and all around: scale-dependent spatial variation in rocky-shore communities of Fildes peninsula, King George island, antarctica

Abstract

Understanding the variation of biodiversity along environmental gradients and multiple spatial scales is relevant for theoretical and management purposes. Hereby, we analysed the spatial variability in diversity and structure of intertidal and subtidal macrobenthic Antarctic communities along vertical environmental stress gradients and across multiple horizontal spatial scales. Since biotic interactions and local topographic features are likely major factors for coastal assemblages, we tested the hypothesis that fine-scale processes influence the effects of the vertical environmental stress gradients on the macrobenthic diversity and structure. We used nested sampling designs in the intertidal and subtidal habitats, including horizontal spatial scales ranging from few centimetres to 1000s of metres along the rocky shore of Fildes Peninsula, King George Island. In both intertidal and subtidal habitats, univariate and multivariate analyses showed a marked vertical zonation in taxon richness and community structure. These patterns depended on the horizontal spatial scale of observation, as all analyses showed a significant interaction between height (or depth) and the finer spatial scale analysed. Variance and pseudo-variance components supported our prediction for taxon richness, community structure, and the abundance of dominant species such as the filamentous green alga Urospora penicilliformis (intertidal), the herbivore Nacella concinna (intertidal), the large kelp-like Himantothallus grandifolius (subtidal), and the red crustose red alga Lithothamnion spp. (subtidal). We suggest that in coastal ecosystems strongly governed by physical factors, fine-scale processes (e. g. biotic interactions and refugia availability) are still relevant for the structuring and maintenance of the local communities. The spatial patterns found in this study serve as a necessary benchmark to understand the dynamics and adaptation of natural assemblages in response to observed and predicted environmental changes in Antarctica.

Description

Keywords

Ciencia, Intertidal habitats, Ice scour, Disturbance, Macroalgas polares, Zonation, Biodiversity

Citation

PLoS ONE 9(6): e100714

Collections

Identidad del Fin del MundoUniversidad de Magallanes• Avenida Bulnes 01855 • Punta Arenas • ChileTeléfono: +56 61 207135 • Email: walter.molina@umag.clSistema desarrollado por Prodigio Consultores en Sistema Dspace